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Liquid Argon Scintillation Mechansim

 Excitation of short-lived argon excited molecular states.
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Effects of Xenon Dopant

Collisional energy transfer from argon excimer to xenon excimer

Ar; + Xe — ArXe™ + Ar,
ArXe" + Xe — Xe, + Ar,
Xe; — 2Xe + 7,4

Happens on a faster timescale than Ar triplet lifetime.

e Triggers triplet emission to produce a faster signal
e Converts scintillation light to 174 nm.
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Effects of Xenon Dopant

Increasing shift /

of scintillation to
174 nm with added
xenon dopant.

TU Munich 2014-2015
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Effects of Xenon Dopant

Wavelength structure
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PAB (Blanche) 2016
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Effects of Xenon Dopant

Wavelength structure
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Effects of Xenon Dopant

Wavelength structure

DUNE-style Dip-Coated Light Guides

10_" f Background-Subtracted, Scaled

- Pure LAr Signal

[ Full LAr+Xe Signal
35 ° . Filter-Passed Signal in LAr+Xe
£ Filter-Blocked Signal in LAr+Xe
g o
o F
() L
2
o -
g 4
O L
O
()
a

P ML aag Hiv T ——
i e Hhenn b wenenaa P22 RERRRREECCSPCTE asasal -

0 0.2 0.4 0.6 0.8 1 1.2 14
Time [us]

PAB (Blanche) 2016

7 Denver Whittington | Xenon Doping of Liquid Argon Syracuse University DU(\’E



Effects of Xenon Dopant

Wavelength structure

Light detected with PMTs (sensitive to different wavelengths)

& LAr PMT (with TP8)
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Technology Benefits

Less expensive glasses are transparent to longer-wavelengths.
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Technology Benefits

Growing variety of direct VUV-sensitive detetctors (PMTs, SiPMs)

(Ta=25 °C, Vover=4 V)
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Technology Benefits

Reduced dependence on wavelength shifters

e Indications that TPB can dissolve into LAr
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Technology Benefits

Remove outer wavelength shifter from ARAPUCA modules
e UV light passes directly into light-trapping volume

174 nm shifted light No need for outer
) ._ wavelength shifter
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e Reduced cost / construction complexity
e Remove light exposure mitigation requirements (light filters)
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Signal Benefits

SiPM signal structure
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Signal Benefits

Timing

e Reduced flash overlap from late-light signals
e Maintains sub-TPC-tick leading-edge timing resolution

Time structure of incident photons

SiPM signal structure
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Signal Benefits

Uniformity

e Reduced Rayleigh scattering improves visibility near CPA
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Signal Benefits

Mitigation of Contamination

e Excitation transfer faster than N, quenching
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Challenges

Injection
Inject low-concentration xenon gas directly into LAr
o Premix GXe into GAr and heat to prevent freezing

o Successfully operated at PAB
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Challenges

Injection

e Inject xenon gas to argon gas prior to condensation
o Available and successfully operated at CERN

Xe and CH4 are injected from here
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Challenges

Injection

e Inject xenon gas to argon gas prior to condensation

< Possible locations for
GAr+GXe premixing

3
.
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Challenges

Maintaining

e Indications are that Xe remains stable in solution.

O Observed scintillation structure at Blanche 2016 consistent with losses
only from LAr boil-off through monitoring devices. This was observed
over the course of about 2 weeks. [DW]

O 3000 ppm solution stable over ~56 hours. [D. Rudik, LIDINE2019]

e Currently no plans to top off a Far detector module. This

means that over time there will be LAr loss.
o This was estimated to be ~1”/yr which would represent a
0.2% changel/yr in the Xe doping fraction.
[Alan Bross & Mark Adamowski, FNAL]

Monitoring

e Residual gass analyzer {Challenging above 100 AMU}
e Scintillation time structure
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Challenges

Cost

e A detailed cost estimate would require an evaluation of flow
rates, piping design, etc., but that infrastructure is likely to be
small compared to the cost of Xe.

e Xenon would likely cost ~ $20k/(ppm Xe doping level)
for one Far Detector module.

e Optimization of xenon doping level needed, but likely in the
neighborhood of ~100 ppm.

from: Alan Bross & Mark Adamowski, FNAL
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Open Questions
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Recent and Upcoming Investigations

ProtoDUNE-SP

e Xenon injection planned for January 2020

e Likely ~100 ppm concentration

e Investigate impact on TPC and mitigation of N, contamination
e Testresponse of X-ARAPUCA to scintillation signal

CERN teststand (FLIC)
e Small-scale combination TPC and PDS
e Investigating mitigation of ~5ppm N, contamination
using Xe dopant
o Preliminary results quite promising!
e Testing response of S-ARAPUCA and X-ARAPUCA modules
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Summary

Small concentration of xenon has several benefits for a large LAr TPC

Reduced ambiguity from late light,

Improved uniformity across drift direction

Potential for increased light yield and efficiency
Simplified photon detector design options

Possibility to mitigate light loss from N,, contamination

Does offer some challenges to understand

e Injecting, maintaining, and monitoring

e Concentration should remain stable; studies needed to confirm.

e Monitoring is a potential challenge; more investigations are needed.
e Cost should be reasonable for low xenon concentration.

TPC Interaction (unlikely, but should be investigated)
Ongoing studies with teststands and ProtoDUNE
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